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Single-cell sequencing allows the many constituent cell types within a tissue 
or sample to each be analysed on an individual level. All types of ‘omics data 
can be analysed during single-cell analysis using both high- and 
low-throughput screening methods. By investigating a sample at such a 
granular resolution, more subtle fluctuations in expression within a specific 
cell type can be identified which would otherwise remain hidden when 
studying a population of mixed cell types. 

Multicellular organisms, by nature, have cell to cell variations (Hodzic, 2016). 
The human body has a wide variety of cell types, where each cell type 
expresses a complement of genes underlying the distinct function of the cell. 
Even within a single tissue, individual cells can harbour substantial or subtle 
genetic differences. Where gene expression measurements are based on a 
homogenised cell population from a tissue sample, the average expression 
results can mask cellular heterogeneity. The information from the entire cell 
populationpopulation may not account for small but functional changes in individual 
cells. With the recent advances in single-cell sequencing technologies and 
bioinformatics approaches, the extent to which cells differ from one another 
within tissues is becoming clearer. The unprecedented levels of resolution 
afforded by these technologies may help to provide mechanistic insight into 
many of the most pertinent biological sciences questions. 

Applying single cell approaches can improve our understanding and 
appreciation that tissues are not a singular entity, but a complex network of 
distinct single cells that coordinate together to achieve a specific function. 

1. What is single-cell analysis?



Applications of Single-Cell RNAseq



There are multiple methods to extract single-cell data. Multiple scRNA 
analytical methods have been benchmarked which assists users in making 
informed decisions regarding the optimal approach for a given experimental 
setup (Ding et al., 2020).  

SiSingle-cell genomics lends itself perfectly to the study of changes that occur 
in a bacterial population, the genetic evolution of cancer, and immune cell 
subtypes amongst other applications. In bacterial populations, phenotypic 
differences between bacterial cells can often be overlooked by bulk 
sequencing techniques. When studying the genetic evolution of cancer, the 
pseudotime trajectory or divergence of cancer cells can be estimated. 

SiSingle-cell epigenomics studies involve the mapping of DNA-methylation 
across the genome in single cells. This can be used, for example, to better 
understand mechanisms that regulate gene transcription including 
environmental influences. Additionally, novel techniques help to study the 
regulation of transcription by identifying regions of chromatin open and 
accessible to transcription factors. 

TTranscriptomics on a single-cell level determines which genes are being 
expressed in the cell at that particular moment in time and can be used to 
categorise cell types within the sample and define cell type-specific gene 
signatures. The transcriptome is often analysed as a proxy for the functional 
proteome; this is due to the lower costs involved for data generation and the 
considerable challenges in accurately quantifying cell protein levels as well as 
post-translational modifications. Gene dynamics studies can 
determine which gene expression changes accompany 
phenotypic variations in cell behaviour, allowing for the identity of 
cells to be established in an unbiased way. Besides cell 
typing, transcriptomics can be used to study gene 
expression dynamics from time-series data or RNA 
splicing to understand how different 
transcript isoforms are regulated.   

2. Research applications



Transcriptomics does not provide any information on post-transcriptional 
regulation processes, which means that there can be discrepancies between 
the mRNA transcripts that a cell expresses and the protein composition of 
cells. However, transcriptomics approaches are equipped to capture dynamic 
changes in gene expression which can happen over far shorter periods of 
time than equivalent changes in protein expression or modification. Further, 
current proteomics protocols typically allow for the measurement of only a 
prpre-selected set of proteins.  

Finally, single cell metabolomics can be used in combination with single-cell 
RNA sequencing and single cell proteomics to provide a full picture of the 
inner working of a cell. It can be used in pharmacodynamics to assess what 
the by-products of treatments are in a tissue and how they differ between 
cells within a tissue. Alternatively, it can give a better understanding of ageing, 
cancer or drug resistance at a molecular level. 



Single-cell sequencing marks a shift away from previous methods of data 
generation as it can bring clarity to complex cell-to-cell variations and 
interactions. This can include cellular responses involved in immune 
response, such as antigen-specific T- or B-cells, or in the tumour 
microenvironment, providing insight into the metabolic and functional state 
of a cell. This new granularity is important, as it recognises the wealth of data 
contained within each individual cell rather than grouping large numbers of 
cells cells together as a sample.  

The main advantage of single-cell analysis is to identify clusters of cells that 
correspond to distinct cell types or states and to understand the relationship 
between their gene expression patterns and phenotype. All types of cells can 
be analysed using a single-cell approach, and even when it is not possible to 
obtain intact cells from a sample (e.g. post-mortem tissues or highly 
interconnected neurons), the nucleus can be used instead (single-nuclei 
analysis). The most common type of data is single-cell RNA-Seq. The 
woworkflow for a single-cell RNA-Seq data analysis is similar to bulk RNA-Seq 
analysis.  However, in single-cell data, each cell is its own sample and needs 
individual library preparation and analysis.

3. Importance in research



Example of a single-cell 
analysis pipeline at 
Fios Genomics



There are several challenges pertinent to single-cell analysis. These include 
low sequencing coverage, presence of libraries that represent more than one 
cell (doublets), and presence of batch effects between data sets that have 
been generated separately.  

CCompared to traditional bulk experiments, the number of reads per sample 
generated from single-cell experiments is considerably lower. This can cause 
issues in the measured gene expression as for many genes, especially those 
with low expression, no corresponding reads are captured, known as 
drop-outs. Thus, a high proportion of genes in single-cell RNA-sequencing 
data appear not to be expressed. Additionally, the stochasticity of transcript 
capturing results in high variation in the measured gene expression between 
twtwo cells, even those of the same type. This high sparsity and overdispersion 
of single-cell RNA-seq data need to be addressed with appropriate statistical 
models. Filtering of low-quality cells (with significantly lower depth libraries) 
and use of appropriate normalisation methods are crucial pre-processing 
steps for obtaining accurate results. This quality control step should also 
address the effects of irrelevant biological variation, such as differences in 
proportions of cells at different cell cycle stages. 

Care needs to be taken at both the experimental design and the analysis 
stages as multiple cells could be inadvertently captured in a single barcoded 
bead (known as doublets), giving rise to libraries which represent more than 
one cell, possibly of different cell types. Doublets can have implications in 
clustering and differential gene expression analysis. Since the percentage of  
doublets increases with an increased number of cells processed, this 
has to be carefully considered during experimental design. However, 
as doublets exist in any data set, especially from bead-based 
methods, these need to be filtered during quality control 
evaluation of the sequencing data. 

4. Challenges for single-cell research



An issue with single-cell research is the varying levels of resolution that are 
generated depending on the platform chosen. Integration of multiple 
single-cell datasets that have been processed independently can cause 
challenges, especially when batch effects or other technical artefacts are 
apparent. This is a particular issue when there is a need to compare datasets. 
Technical artefacts, cell quality, and batch effects all need to be accounted for 
at the analysis stage as these can mask biological variation in the data. 
FuFurthermore, integration of different sources of single-cell data such as 
proteomic, genomic, and metabolomic data also requires appropriate 
methods that consider technical artefacts but also dependencies between 
different measurements (for example, protein levels are not independent of 
gene expression). 

There is a challenge in how best to integrate spatial information from cells to 
find cell types or functions. By isolating single cells, this removes them from 
their native environment and the contextual information about the cell’s 
spatial environment and dynamic position can be lost.  

WWith the rapid improvement and the decreasing costs of experimental 
protocols, single-cell analysis is becoming a routine method for studying cell 
biology. This leads to an ever-increasing amount of reference single cell data 
sets and tissue atlases to explore and map generated data against. 



As with many challenges for emerging research, there are methods being 
developed to resolve or mitigate them. The first opportunity to minimise 
single-cell analysis issues is at the experimental design stage. Choosing a 
well-suited method for your research question will allow for a balance 
between throughput and transcript coverage. Additionally, this can reduce 
the number of low-quality cells and doublets as well as the impact of batch 
effects, allowing for better integration of multiple data sets.  

TThe second opportunity to minimise single-cell analysis issues is at the quality 
control stage. This stage is crucial for single-cell analysis, as this can monitor 
gene expression distribution to eliminate cells with abnormally high levels of 
expression as well as highlighting issues surrounding the cell cycle stage 
which could affect clustering. Similar cells cluster together due to their gene 
expression and subtypes may cluster separately within the larger clusters, 
which allows for uncovering of previously unappreciated heterogeneity 
withinwithin cell populations. Further, batch effects or technical bias in the data can 
be accounted for in order to ensure that these do not impair downstream 
analyses or biological interpretation of the results. 

5. Resolutions



Single-cell analysis allows for information to be drawn from individual cells 
rather than from the combination of cells of diverse composition within a cell 
population. As each cell has a distinct lineage, viewing the variations between 
individual cells of a tissue gives greater granularity into how cells react or 
change in response to environmental factors. 

TThe use of single-cell analysis will help to better understand the nature and 
complexity of different diseases, with the potential to unlock more effective 
therapeutics for a wide range of disease indications. The challenges for 
single-cell analysis must not be overlooked, particularly the true 
heterogeneity in cell populations which can now be fully detected, assessed, 
and appreciated. The introduction and maturing of new computational tools 
will give greater flexibility to future research. Additionally, advanced tools 
enencompassing both high- and low-throughput methods continue to be 
developed, enhancing integration of different ‘omic datasets.  

6. Future of single-cell research
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7. Fios Genomics' expertise

Fios Genomics has experience with single-cell analysis related to different 

therapeutic areas and disease indications. We have expertise in the analysis of 

complex single-cell RNA-Seq using standard workflows to address the 

inherent statistical challenges such as low library size, drop-outs, and batch 

effects. 

Every time our clients work with Fios, they benefit from: 

• 

e 

Backed by an experienced team to curate 

all data, identify the most appropriate 

statistical approach to take, and provide 

biological interpretation of results 

Internally peer-reviewed, including all 

analysis, methods and outcome 

Upon receipt of our data analysis 

report, we arrange a teleconference so 

that our lead analyst can talk through 

the results 

Access our data analysis sample reports 
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Executive Summary 

E. 1 Executive summary -

E.1.1 Project overview 

This report describes the analysis of a single-cell RNA sequencing (scRNA-seq) dataset containing peripheral blood mononuclear cell (PBMC) gene expression profiles sampled 
from a healthy donor .  This dataset was obtained from the publicly available 1 OX Genomics download portal 

The main objectives of this analysis were to· 

• Identify cell clusters in the data and annotate these by immune cell type using established biomarkers 

• Identify differentially expressed genes (DEGs) between cell populations. 
• Identify functional pathways that are significantly enriched in DEGs between clusters. 

E.1.2 Data processing and quality control 

Full data processing and quality control information can be found in the quality control and experimental data analysis section of the report. In brief, libraries were sequenced on 
lllumina NovaSeq with 28 bp (16 bp barcode and 12 bp UMI) + 91 bp reads and approximately 76k reads per cell. Fastq flies were processed with the Cell Ranger pipeline. The 
resultant raw counts matrix consisted of reads for 21,819 genes in 5,025 cells, which formed the basis of the analysis presented here. 

Cell expression data were filtered to exclude those cells where low numbers of genes and housekeeping genes were detected, as well as those with a high proportion of 
mitochondrial genes. After filtering, expression data pertaining to 4,513 cells with a median of 2,236 detected genes per cell were retained for analysis. 

Data normalisation was performed using a variance stabilising transformation normalisation method for single-cell RNA-sequencing data (Hafemeister and Satija, 2019, Genome 
Biol.), implemented in the Seurat R package. 
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Excerpt from Fios Genomics' data analysis report 

showcasing single-cell analytical capabilities 
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https://www.fiosgenomics.com/request-a-sample-report-scrna/
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Fios Genomics offers a wide range of analysis solutions, including all types of 

'omics data. For more information about how Fios can help with your 

'omics data analysis needs, visit our services page. 
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Bubble plot from Fios Genomics' data analysis report 
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Expression of PTPRC (CD45) from 

Fios Genomics' data analysis report 

• 

• 

"" 

• \... · . 
� \ ' ,.• • 

• 

\ 

PTPRC 

Cluster,15 

DC,2 

DC,1 

Mono,2 

Mono,1 

B,2 

B,1 

gdT2 

gdT1 

CD8-T2 

CD8-T1 

CD4-T5 

CD4-TA 

CD4-T3 

CD4-T2 

CD4-T1 

0 2 

• 

3 

Expression Level 

• 

• • 

• •

https://www.fiosgenomics.com/services/the-services-we-offer/


1. Andor et al. (2020) Joint single cell DNA-seq and RNA-seq of gastric cancer cell lines reveals rules of in 
vitro evolution. NAR Genomics and Bioinformatics, 2(2): lqaa016. 
[https://academic.oup.com/nargab/article/2/2/lqaa016/5805307] 

2. Ding et al. (2020) Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. 
Nature Biotechnology, (38): pp. 737–746. [https://www.nature.com/articles/s41587-020-0465-8]  

3. Fios Genomics (2020) Single-Cell Example Report 

4. Fios Genomics (2018) Single-Cell Analysis [https://www.fiosgenomics.com/single-cell-analysis/] 

5. Hodzic (5. Hodzic (2016) Single-cell analysis: Advances and future perspectives. Bosnian Journal of Basic Medical 
Sciences, 16(4): pp. 313-314. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5136769/] 

6. Lähnemann et al. (2020) Eleven grand challenges in single-cell data science. Genome Biology, 21: 31. 
[https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-1926-6] 

7. Macosko et al. (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter 
droplets. Cell, 161(5): pp. 1202-1214. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481139/ ]

88. Micheli et al. (2020) A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals 
bifurcated muscle stem cell populations. Skeletal Muscle. 10: 19. 
[https://skeletalmusclejournal.biomedcentral.com/articles/10.1186/s13395-020-00236-3]

9. Nguyen et al. (2018) Experimental Considerations for Single-Cell RNA Sequencing Approaches. 
Frontiers in Cell and Developmental Biology. 6: 108. 
[https://www.frontiersin.org/articles/10.3389/fcell.2018.00108/full]  

110. Picelli et al. (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature 
Methods, 10(11): pp. 1096-1098. [https://pubmed.ncbi.nlm.nih.gov/24056875/] 

11. Sierant and Choi (2018) Single-Cell Sequencing in Cancer: Recent Applications to Immunogenomics 
and Multi-omics Tools. Genomics & Informatics, 16(4): e17. 
[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440661/] 

12. Yuan et al. (2017) Challenges and emerging directions in single-cell analysis. 
Genome Biology, 18: 84. 
[h[https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1218-y] 

References


